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Integrals required in the application of variational principles to the scattering of 
electrons by atoms are reviewed, special attention being paid to the case of a coulomb 
field. A technique is described for the evaluation of integrals involving two continuum 
functions. 

1. INTRODUCTION 

Increases in the size and speed of computers in recent years have led to an 
awakened interest in the variational approach to scattering calculations [l]. This 
approach reduces the problem to one of evaluating one- and two-electron integrals 
over the orbitals of the chosen basis set. We shall describe rapid and accurate 
methods of calculating the integrals. The methods are essentially analytical and 
do not require any numerical tabulations of continuum wavefunctions. 

The radial integrals are of five types, 
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J2 = l.h.a~ I rQA/r?’ I .A4 

= j,” dr r%(r)&(r) /r” j,” dr’ r’%zl(r’) tz&)/r’A+l 

+ (l/r”+‘) 1: dr r’“&‘> u2(r’) r”/, (4) 

= s: dr r2ul(r)fi(r) [r” /y dr’ rf2a2(r’)f,(rt)/r’A+l 

+ (l/rA+l) j: dr’ r’“u*(r’)fi(r’) rtA/, (5) 

where al , a2 , a, are bound state orbitals and fi , f2 are continuum orbitals. If 
we introduce the Hater orbitals, 

Sj(r) = rnj-l~-cj’, 

the bound orbitals may be represented by expansions such as, 
(6) 

u(r) E f C$$(r). 
j=l 

(7) 

In order to satisfy the boundary condition on a continuum orbital, which always 
has the form, 

we use the fact that 

4 rz (&) flz + [l + (*)2]1’2 yz+, (9) 

and write, 

jz and Mz are coulomb-bessel functions defined in 2.1 

1 The coulombbessel functions are related to the more familiar coulomb functions by the 
equations, 8&, i) = WV, O/G &CT, t) = WJ, W. 
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The integrals (I)-(5) can now be expressed in terms of five standard functions, 

fidv, k 4 = ,; xme-az$z(r], kx) dx, (11) 

f:‘(rl, $3 k, k’s 4 = ,; xme-OLz$drl, W Jd~‘, k’x) & (12) 

HA,(q, k, a, /3) = [“me-a’jl(y, kx) dx Irn yne-6f’ dy, (13) r 

H:htq, B’, k, k’, a, PI = /F-asjz(q kx) ftt($, k’x) dx /,” yne+’ dy, (14) 

2. COULOMB WAVEFUNCTIONS 

The radial wavefunction in a coulomb field of effective charge 2 satisfies the 
differential equation (cf. [2], [3]). 

(16) 

It is convenient to introduce the parameter 7 

q = Z/k. (17) 

The regular solution of (16) may be expressed as a confluent hypergeometric 
function 1F1 . The coulombbessel function defined by 

yz(q, kr) = V,(q) eikr(2kr)l $,(I + 1 - iv; 21 + 2; -2ikr) (18) 

is a solution of (16) which we adopt as the standard notation. If 7 -+ 0 we recover 
the spherical bessel function, 

fz $61, kr) = jztkr). (19) 

The normalizing factor V1 is 

V,(q) = enrr12 1 r(l + 1 + i$(/21+ 1 ! 

1 
= 21+ l! 1 1’:2,, lj ts2 + r17y. (20) 
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The asymptotic form of $r(q, kr) is (cf. [2] p. 541). 

where 

@z(q, kr) = kr + 77 In(kr) + ut - $- , 

uz = pqz + 1 - iv) 

= --q-/4 + 1) + ,j+l [arctan (a) - (+),I, 
(r is Euler’s constant). 

The asymptotic behavior of the irregular (logarithmic) solution is given by, 

cos Oz(q, kr) 
-‘%I, W ,ym - -kr . 

(23) 

(24) 

(25) 

3. THE FUNCTIONS~,~(~, k,u) 

If we substitute (18) in (1 l), expand IF1 in a convergent power series, and integrate 
term by term we find that [4] 

f z(rl k, a> = z + m! (Wz ~~(71) m , (a - &)Z+m+l 

e2Fl ( I+ 1 -iqI+m+ 1;21+2;*) (26) 

for / 2k 1 < ] 01 + ik ] ; the function exists for other values by analytic continuation. 
Transforming zFl by a well-known theorem [6, p. 641 we obtain 

f Z(rl k, a) = z + m! (Wz vZ(d 
m , 

(a + ik)z+m+l 
$1 I+ 1 +ir),Z+m+ 1;21+2;$&--8. (27) 

Comparing (26) and (27) we find 

f!m(-v, k 4 
.LmY~, k, 4 

= &$ (k” + a2)m exp{--27 arctan(a/k)). (28) . 
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While (26) is not suitable for direct computation it can be used to derive expressions 
for fml in special cases. If m = I + 1 we have 

f:+l(q , k, a) = 21 + ’ 1 (2k)z Vz(rl) exp(-27 arctan(k/oc)}. 
(k2 + cxy+1 (29) 

Since foo(q k, CY) = fz fio(v7, k, t) dt, or using the series directly, it is readily 
shown that 

foot% k al = 2$ %@- (1 - exp[--27 arctan(k/oL)]}. (30) 

We compute the other fmz by means of recurrence relations, starting with the 
recurrence relations [2] satisfied by the coulomb-bessel functions fz(q x), 

[l + (*)2]1’2A+l - w+ 1) [-+ - (1: 1) ] A+ [l + (~))a]1’eA4 = 09 
(31) 

(21+ 1) -&fz = Z [l + (+))2]1’2$z--1 - (I + 1) [I + (&)‘]“‘$‘z+1. (32) 

From (31) we deduce 

[l + (*)yzff+l - y [ft-, - gq 1) fmZ] 

+ [l + (+)2] f?Y = 0, 

and from (32) 

(33) 

1 [l + (g]1’2fk1 - (I + 1) [l + (*)2]1’2jzl 

= @$-Q(afmL + rnfj+J (I + m 1 >O). (34) 

Eliminating fk-, between (33) and (34) we have 

U- m + 1) [l + (&)2]1’2fkF + @Z+ 1) [f- - z(l~l) ]fmz 

- (I + m) [l + (+)2]1’zfk1 = 0 (I + m ) >O). (35) 
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The case 1 = m = 0 must be examined separately, 

(1 + ~2)l/Zf01 + (f + ?#@J = Y’ . (36) 

The relationship 

(k2 + a3 f?tz+1 - 2(ma - k)fmz - (I + m)(Z - m + I)&, = 0 (37) 

was derived by Bransden and Dalgarno [5] directly from the differential equation 
(16). It may be obtained from (33) and (34) with a great deal of effort. From 
(34) and (35) we obtain 

[l + (+)2]1’2f;:; - qy? + [f + &] f;+l = 0. (38) 

Finally from (33) and (34) we have 

@- “, + l) fkel = [I + (+)2]1’zj;l - (f _ f)lfmZ* (39) 

We now outline an algorithm for computing fmz(q, k, a) where 1 = 0(1)1,,, 
and m = -Z(l)mMAx . Equation (29) is used to evaluate f :+, for I = 0, l,..., 
max(lMAx , mMAx - 1); then (38) is used to obtain fiz for I = 0, l,..., 
max(lMAX , m&,x) starting from (30); (35) gives f t+6 for 6 = 1, 2,..., &Ax - 1 
andfi-‘for6 =2,3 ,..., I; finally f !, for m = 1, 2 ,,.., I is calculated using (39). 
If only a single value of I occurs it is more convenient to make use of (37). fnzz may 
be evaluated for a negative m using (28); however if the value of ffm, is also 
required this procedure necessitates the calculation of both f:m,(~, k, CL) and 
fi,,,(--7, k, CX) and so it is not recommended unless 77 = 0. 

4. THE FUNCTIONS~~'(~, T', k, k’, a) AND HE' (7, T', k, k’, a, @) 

To handle integrals involving the product of two coulomb wavefunctions we 
use the following integral representation [2], 

Ah 4 = 
ennxz 

21+ 1 ! a,(T) 21+1 s +m (1 - tanh2 ~)~+l exp i(x tanh u + 277~) du. (40) --oD 

Thus, transforming the function yL in (12) by means of (40), we obtain the expres- 
sion 

2e+m(2k)Z +m e-2(Z+1--in)u 

= 2Z+ 1 ! Vl(~) J- f,$+l(vf, k’, a! - ik tanh U) du. (41) --co (1 + e-2U)2z+2 
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The integral in (41) may be evaluated using a Gauss-Laguerre quadrature formula. 
The methods of calculating &(v, k, IX) described in [3] are equally applicable 
for complex values of (Y (Re 01 > 0). 

By the same reasoning we can express the integral fif: , defined by (15), in the 
form 

iT&(q, q’, k, k’, a, fi) 
&q~)Z +m e-2(z+1-in)u 

= 21 + 1 ! yz(q) 1 --co (1 + e-2u)2z+2 Hii+znW, K a9 P - ik tanh 4 du. (42) 

The evaluation of Hi,, is described in Section 5. 
In a few special cases f g may be evaluated in closed forms. Since these special 

cases are useful as numerical checks they are included in an Appendix. 

5. THE INTEGRALS HA,& k, a, j?) AND Hzi(~, q’, k, k’, 01, j3) 

Consider the integrals of the general form 

@,,(a, p) = 1,” xme-arz+) dx Irn yne-Bv dy. 
z 

Repeated integration by parts gives the result 

@mn(% PI = g z. 3 m p” Y?n+s(a + /% 

where 

An economical way to compute Q,,,,, is to use the recurrence relation 

As special cases of (46) we have 

(43) 

(49 

(45) 

(46) 
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6. CONCLUSION 

Experience has shown that the methods described in this paper are highly 
suitable for automatic computation. Special results involving the spherical bessel 
functions (19) may be obtained by putting 7, v’ = 0 everywhere.2 

APPENDIX: CLOSED FORMULAS FOR fg 

The following very general theorem may be proved using integral representations 
of the hypergeometric functions, 

I 

cc 

xve-~“zlFl(a; c; Ax) IFl(a’; c’; A’x) dx o 

where F2 is the hypergeometric function of two variables 161. If we use Eq. (18) 
to express the coulomb-bessel functions in terms of 1Fl , (49) gives the result, 

= 
I + I’ + m ! (2k)l(2k’)l’ exp &-r-rr(q + 7’) 

1 r(l+ 1 + iv) r(l’ + 1 + i$)l [a + i(k + k’)]z+z’+m+l 

* F,(I’ + I + m + 1,l + 1 + iq, I’ + 1 + iT’, 21+ 2, 21’ + 2, 

2ik/[a + i(k + k’)], 2ik’/[a + i(k + k’)]). (50) 

If c = c’ in (49) the integral is expressible as an ordinary hypergeometric function 
[6, P. 2871, 

I 

m 

x”e-~zlFl(a; c; Ax) 1Fl(a’; c; h’x) dx 
0 

F(c) p+- 
= oc _ A)” & _ q& 2Fl [ 4 a’; c; & _ & - A’) 1 * (51) 

2 Lyons and Nesbet [8] have independently devised procedures for integrals containing spherical 
bessel functions. Their method for they,” integrals is similar to that used in the present paper, 
but they approach thefg integrals in a very different way. I am grateful to Dr. Nesbet for sending 
me his work in advance of publication. 
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fYrl, $3 k, k’, 4 
21+ m! (4kk’)l exp &r(r, + $) I r(l + 1 + iv) r(Z + 1 - ir]‘)( = 

(21 + 11)” (a _ jk + #)Z+l+ln (& + jk - &')Z+l+in' 

* & [I + 1 + iv, 1 + 1 + i$; 21+ 2; a2 +-$r k,j2 ] (Re cy. > 0). (52) 

These formulas are not convenient for computation. 
By using relations derived for bessel functions [7] it may be shown that 

f $0-4 0, k k 24 
kz+“l + I’ + m ! 

s 
r/2 (cos !qz+z’+l cos(l - Z’)@ 

2z+t,+mz + 1’ + 1 ! 0 (a2 + k2 cos2 @))(Z+Z'+~a+l),22~1[('+ I'+ m + 1)/2y 

(I + I’ - m + 2)/2, I + 1’ + 2, (k2 cos2 @)/(a2 + k2 cos2 @)I d@, (53) 

which is more simply written as 

f ii’@, 0, k k 24 

= (p,“” (3” s,” (COS @)lP cos(l - Z’) @f:?b;“(O, k cos @, 0) d@. (54) 

These formulas do not appear to be more than curiosities. 
From the differential equation (16) we can show that 

fi%, rl, k k 0) = 
sin[(Z - 1’)42 - (uz - uz,)] 

k(l - 1’)(1 + 1’ + I) 

where uz is defined by (23). If I’ > l(51) becomes 

(55) 

f ;“‘<q 7, k k 0) = 
sin[(Z - 11)7~/2 - &=,+, arctan( 

k(l - Z’)(l + 1’ + 1) 

But if we let I -+ I’ in (51) we have 

f;zh, % k k 0) = ,&+ 1) (5 - 2) 

(56) 

(57) 

= 2k(2;+ 1) + (21: 1) S$+1 (s2 : q2) * 

The infinite summation in (5) can be evaluated exactly, since 

(58) 
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